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The Two-Dimensional Coulomb Gas on
a Sphere: Exact Results
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At the special value of the reduced inverse temperature [”=2, the equilibrium
statistical mechanics of a two-dimensional Coulomb gas confined to the surface
of a sphere is an exactly solvable problem, just as it was for the Coulomb gas
in a plane. The thermodynamic quantities and all the correlation functions can
be calculated. Use is made of an isomorphism between the classical Coulomb
gas and the free Fermi field theory associated with the Dirac operator on the
sphere.
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1. INTRODUCTION

Some time ago, exact results were found for the equilibrium statistical
mechanics of a classical two-dimensional Coulomb gas (two-component
plasma). At a special value of the temperature, the thermodynamic quan-
tities and all the correlation functions can be calculated. Starting from a
lattice version™ of the model, it is possible to take the continuum limit.>*
Simplifications occur in this continuum limit because of an isomorphism
between the classical Coulomb gas and a quantum relativistic free Fermi
field described by the two-dimensional Dirac Lagrangian.

In the present paper, we consider the case of a two-dimensional
Coulomb gas confined to the surface of a sphere at that same special tem-
perature. The mathematical problem is amusing, because the isomorphism
will now involve a two-dimensional Dirac equation on a curved space.
Another motivation is that exact results on a sphere can be used as a guide
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for some numerical simulations for which it is convenient to use a spherical
geometry. The similar problem of the one-component plasma has already
been investigated.®®

In Section 2, we review the known results for the two-dimensional
Coulomb gas in a plane. In Section 3, we show how the problem on a
sphere is related to the problem in a plane by an appropriate stereographic
projection. The thermodynamic properties and the correlations are
obtained, including explicit curvature corrections for the former.

2. THE COULOMB GAS IN A PLANE

The model is a two-dimensional system of particles of charges +e.
The Coulomb interaction between two particles of charges e and ¢’ at a
distance r from one another is —ee’ In(#/L), where L is some length scale.
The dimensionless coupling constant is I'= fle?, where B is the inverse
temperature.

The point-particle system is well behaved for I'<2. From scaling
considerations,'”’ one finds the very simple equation of state

ﬂp=p<1—§)

where p is the pressure and p the number density (total number of particles
per unit area). More detailed results can be obtained at the special value
I'=2 for the coupling constant (which we shall choose from now on),
provided some short-distance cutoff is introduced to prevent the collapse of
pairs of oppositely charged particles. We first review (with minor changes)
the relevant parts of refs. 1-3.

It is convenient to represent the position of a particle either by the
vector r=(x, y) or by the complex number z=x+ iy. For a system of N
positive and N negative particles, the complex coordinates of which are u;
and v, respectively, the Boltzmann factor at I'=2 is

exp {2 Z |:1n U —U; +1n vizvj :|—221n u,——vj}
I<j Y]
— 2N ILic; (i —u)v;,—v) 2
Hi,j(ui_vj)

— LZN

1
det[ :|
U,— ;i j=1,.,N

where the last equality stems from the Cauchy double-alternant identity.
Let us consider first a lattice version of the model. Two interwoven lattices




2D Coulomb Gas on a Sphere 181

U and V are introduced. The positive (negative) particles occupy the sub-
lattice U(V'). Each lattice site contains at most one particle. Then the grand
partition function (here defined as a sum including only neutral systems) is

2 i L 2
Z=1+4+1>Y +4* Y ]det[ J + -
uel/ Uu—"v u e U uf‘vj ij=12
ve V vy, eV

where the sums are defined with the prescription that configurations which
differ only by a permutation of identical particles are counted only once. It
can be easily seen that this grand partition function is the expansion of a
determinant built on all lattice sites:

B AL AL
1 0 .

Uy —vy Uy—u

AL AL

0 1
Uy— Uy Uy—Uy
Z =det

AL AL
— = —~ 1 0
Uy —Uy Uy —U

AL AL

0 1

-]

Let us now take formally the continuum limit, ignoring divergences.
A more compact notation can be introduced using 2 x 2 Pauli matrices 1,
o.,0,, 0., and their combinations

1 . 0 1

g, =§(ax+za_v)=<0 0) and
1

o.=3 (a_x——iay)=<(1) 8)

The grand partition function Z becomes
Z=det[1+AL{r| K|r')] (2.1}

where K is now a continuous matrix the elements of which in position
space are defined as

S (22)

z—z -7z

K ey =
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These matrix elements are themselves 2 x 2 matrices. In the continuum
limit sums become integrals provided the fugacity A is redefined by writing
Z as

2

drda' + -

Z=1+/12j

lz—2|

The integral kernel K has the remarkable property that its inverse is
a very simple differential operator. Indeed, from the identities

a 1 a a AYE- >t _1 2 "o ’

62‘2—2'_62—621n(2_2)(2_z)—ZV In|r—r'|=7dé(r—1')
and

a ’

822—2’2n5(r_r)

it follows that
0 0 ,
(axé;-l—ayb—)}—) {r| K’

0 0 g o
=2 — — + —)=2(r—r’
<a+ 6z+a‘ 62><2_2,+2_Z_,> wo(r—r’)
and therefore the inverse of (2z) ' K is the Dirac operator

¢=20 i%—a 9 =0 —a—+a 9
B Yoz T Téz) Foex Yoy

In terms of a rescaled fugacity m = 2nlLA, which has the dimensions of
an inverse length, the grand partition function can be rewritten as

Z=det(l +md ")
Therefore
InZ=Trin[1+mé ]=TrIn[(d+m)d "] (2.3)

The trace is to be taken here both on space and Pauli matrices. Equation
(2.3) expresses the well-known equivalence between the two-dimensional
Coulomb gas at I'=2 and the free relativistic Fermi field associated to the
Dirac operator # + m. The rescaled fugacity m becomes the mass in the
Dirac operator.
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One obtains the correlation functions by the usual trick of considering
the fugacity m in (2.3) as position dependent, m=m(r), and taking
functional derivatives of In Z with respect to m(r). Marking the sign of the
particle at r by the index s= +1 and defining the Green function

1
oo F2) = Cru8il 22— 12820 (2.4)

one obtains the one-body density for each species
py=mG(r,1) (2.5)

the truncated two-body densities

)1

pslsz (rl’ r2) = _szslsz(rli r2) G5251(r25 rl) (2'6)
and more generally the truncated n-body densities

pi‘:lng(rl 4 r27"'7 rn) = ( - 1 )n+ ! mn Z Gsilsiz(rip riz) T Gs,-ns,"(ri,,’ ri]) (27)
Gz in)

where the summation runs over all cycles (i,i,---i,) built with {1, 2,.., n}.

It is useful to note the symmetry relations (the first of these was misprinted

in ref. 3)

Gss(rl7r2)=Gss(r2’ l.l)a Gsfs(rurz): _G~ss(r27r1) (28)

An explicit calculation of (2.4) gives, for a constant fugacity m,

m
Goo(rum)= G (1, r) =5 Ko(mlr, =)

—  m
G_ (r,n)=—-G, (r,,x =§;e""K1(m]rl~r2§)

where ¢ is the polar angle of r; —r, and K, and X, are modified Bessel
functions. When used in (2.6) and (2.7), this Green function gives finite
truncated n-body densities {(n>2). However, the one-body density (2.5)
diverges [K,(0) is infinite]. This divergence, expected for a point-particle
system, can be removed by some regularization procedure. For example,
if the particles are small, charged, hard disks of diameter ¢ (“small”
means mo <1), K, must be replaced®® by K,(ma)~In(2/mc)—7y (here
y=0.5772.. is Euler’s constant) and the expressions for the densities
become >

m? 2
Pv=pP- Zn(nma y> 29)
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In the same way, the pressure obtained from (2.3)

4’k 2
ﬁp=[mln<1+%> (2.10)

diverges and must be regularized to

B —m—2<1n 2 -i—1 2.11
p_27t — 2 (2.11)

consistent with (2.9), which is a regularized form of

19 Lo dk
P+—Pg—5m%(ﬁp)—m J(—zn—)zm (2.12)

3. THE COULOMB GAS ON A SPHERE: STEREOGRAPHIC
PROJECTION

We now assume that the particles are on the surface of a sphere of
radius R. We define the Coulomb interaction between two particles of
charges e and ¢’ as —ee’ In(r/L), where r is the length of the straight line
in space which joins the particles, not as one might expect the geodesic
distance on the sphere. With this choice, through an appropriate
stereographic projection, the problem on the sphere can be mapped to a
planar problem of the type considered in Section 2. The properties of the
Coulomb gas on the sphere can be expressed in terms of the spectrum and
Green functions of a Dirac operator on the sphere which is related to the
usual Dirac operator in the plane by the stereographic projection.

3.1. Stereographic Projection

Let us consider a sphere of radius R and the plane tangent to its south
pole (Fig. 1). Let P be the stereographic projection of a point M of the
sphere onto the plane, from the north pole. In terms of the spherical
coordinates (0, @) of M, the complex coordinate z = x + iy of P is given by

‘ o
z=2Re" cotan 3 (3.1)

This projection is a conformal transformation. An element of length d/ at
M and its projection |dz| at P are related by the conformal weight
6 1

e =sin’ ==

2 1+(|z|*/4R%)
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P

Fig. 1. The stereographic projection.

That is, d/=e® |dz|, independent of the orientation of these elements.
Therefore, the angles are conserved. The line joining two points M and M’
has a Euclidean length 2R sin(«/2), where « is the angular distance from
the center of the sphere. This length also has a simple relation with its
projection |z —Z'|:

, 6 .
2R sin %:wﬂ 2= e =sin 7 |z —2'| sin = (32)
The grand partition function of the Coulomb gas on the sphere is
AL?
Z=1+|dSdS' ————st -
+[a [2Rsin(%2)]2
APL?
= Sd ! 7
1+jd S |€w/2(Z—Z')€w/2!2+

where dS and dS’ are the area elements around points M and M’, respec-
tively. Following the same steps as in Section 2, with z—z’ replaced by
e“?(z—z') e®?, we now find for Z the expression

Z=det[1+ 1L M| K |M'>] (3.3)

where the matrix elements of K between two points M and M’ are given
by

7+ = (3.4)

M KM= : ;
< , [ > €w/2(Z-Z,) e /2 + em/Z(Z—_Z—/) e® /2
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Again, the integral kernel K has a diffrential operator as its inverse. The
inverse of (27) ™' K is now

D=e 3" (o’ 5%—1-%;%) e¥? =g 73 Pl (3.5)

since

DM K| M’y =e 32 ge»?e 2 (____a+ + _G_,> e~

z—2z' ZI—2Z

—6‘3‘1’/22755([‘—[‘/) o2 - =2ne” 2‘”5(r ):27{ 5(Ma M,)

Here §(M, M’} is the Dirac distribution on the sphere defined such that
jé(M, M')dS’:fa(M, M) R*d(cos 0') dgp’ = 1

and dS’ =e* d*r'.

Thus, the Dirac operator # in the plane has to be replaced by D
defined by (3.5). It turns out that D is the Dirac operator on the sphere.
The Dirac operators in curved spaces have been investigated by many
authors. A recent review of the Dirac operator on the sphere can be found
in ref. 8. For more general references, see, e.g., ref. 9.

3.2. Thermodynamic Properties

If we define again a mass m in terms of the fugacity 4 by m=2nL4,
we have instead of (2.3)

InZ=Trin[1+mb "]

The cigenvalues® of P are +in/R, where n is any positive integer,
with multiplicity 2a. Thus, the pressure is given by

1 1
InZ= Trin[1—m?D~?]

br=tmr 8k’
w5 [
ninf 1+ (3.6)
~ R 2
and the densities are
1 (ﬁ m? T 1
T
Pe=pP-= p)= 87R?  m*—D?
m? = n
o m2R? +n? (3.7)

n=1
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These pressure and densities are divergent quantities, unless they are
regularized by a short-distance cutoff, as in the planar case.

In the limit R - oo, setting k=mn/R, we retrieve the planar resuits
(2.10) and (2.12). However, it is also possible to compute finite-size
corrections, and these corrections turn out to be nondivergent. They can be
computed as follows. From (3.6), the finite-size correction to the pressure
is given by

Bp—Bp(R=00)=

N
SR Nh_r)noo [ Y nin(n*+m?R?)

n=1

N N N
—J dnnln(n®+m’R*) -2 Y nlnn+2j dnnlnn]
0

0

n=1

From the Euler-MacLaurin summation formula, with f(n)=n In(n>+m*R?),
one obtains

N N
Y nln(n2+m2R2)—f dn nn(n* +m>R?)
0]

n=1

1 1 , , 1 .
=5 W)=/ O]+ LN = f1(0)] === L/"(V)

1 1
—f"0)]+ --- :NlnN+g(lnN+1)+0<7v_2>

1
T20mRE T

Similarly, there exists an asymptotic expansion {see ref. 10, p. 42)

1 2
T In(mR)* +

N

N 1 1
Y nlnn-jo dnninn=>Nin N+ (nN+1)

_c’(—1)+0(%>

where (' is the derivative of Riemann’s zeta function: {'(—1)= —0.1654....
Therefore

n=1

1 I:_ln(mR) 20(~1) 1 (38)

— Bn(R = - e
Pr=PrR=0)=0 | == * TR TTamR T |

Correspondingly, the finite-size correction to the densities (3.7) is

{ 1 1
ps—ps(R=oo)=57—r[-—12R2—~——120m2R4T ] (3.9)
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These corrections are respectively of order (In R)/R? and 1/R?. This is to be
compared to the case of a disk of radius R, for which there is a boundary
correction of order 1/R.

3.3. Correlations

The correlations are still given by (2.6) and (2.7), where now, however,
the Green function must be defined with D, the Dirac operator on the
sphere:

1
Gslsz(rhrZ): {rysy] — |18, (3.10)
D+m

We have defined here a point on the sphere by the coordinate r of its
projection. This Green function has been studied in different forms. For our
purpose, it is most convenient to adapt one of the earliest references.!'"

The definition (3.10) of the 2 x 2 matrix G is equivalent to the partial
differential equations

(e 7392 2“2 + m) G(r,v')=0(M, M')=e**S(r—1’) (3.11)
In terms of
G(r,r')=e“?G(r, 1) e®”? (3.12)
(3.11) can be rewritten as

(@ +me*) G(r,r')=8(r—r1') (3.13)

This equation (3.13) has a remarkably simple interpretation: G(r, r') is the
Green function for the planar problem with a position-dependent fugacity
me?” =m[1+ (r’/4R*)]~".

A Special Case. Since me®” depends only on the distance r to
the origin, we expect that this circular symmetry will make the problem
simpler in the special case when the source point it at the origin r' =0, i.e,,
at the south pole of the sphere. Let us first deal with this case.

Equation (3.13) then can be written as

G(r,0)=(m—e “0)[(2+me*)m—e "8)] "
or equivalently as

G(r,0)=(m—e~“2) H(r) (3.14)
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with H(r) determined by
[m%e®” —fe~“0] H(r)=0d(r)

Because of the circular symmetry, H= H(r) is a function of the distance
alone and the equation for H is the ordinary differential equation

1d d
m?e® ———re ®— | H(r)=4(r) (3.15)
rdr dr
Near r=0, V2H(r) = —4(r), i.e., H(r) is singular as —(27) ' In r. In terms
of the variable s=e®=sin*(6/2), (3.15) becomes the hypergeometric
equation
2

d d
lis(l—s);i?ﬂszv—mzR{leo, s<1 (3.16)

The solution to (3.16) which is singular as —(2n) 'lnr~ —(dn) ' x
In(1 — s) at the south pole s =1 and regular at the north pole s =0 is of the
form@?

H=AsF(1 +imR, | —imR;2;s)

where F is the hypergeometric function and 4 a constant. Indeed, near
s =1, the behavior of F is

P SRR =)+ w1+ imB) 4+ $(1 —imR)+ 2] (317)
mmR

where i is the logarithmic derivative of the gamma function and vy is
Euler’s constant. Therefore 4 =mR/(4sinh mmR) and we obtain from
(3.12) (with e*" =1) and (3.14)

G+ +(l‘, O)ZG“_(I‘, 0)

m’R s'nQF 1 +imR, 1 'R2s'29
=—————gin= —imR; 2; sin? =
AsinhamRo T2 s $ 2

and
G, (r,0)=G_ ,(r,0)

m

) 0 g
=— T ® — 1 ; 1 —i vt ainl O
2 sinh R e " cos 5 F< + imR, imR; 1;sin )

2
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For future reference, it is preferable to write the solution in terms of the
angular distance « between the two points involved in the Green function.
Here o =n—0, and

G, .(r,0)=G__(r,0)

m?R o o
= cos=F{1+i 1 —imR; 2; cos® = .18
Zsoh 7tchos2F< + imR, imR; 2; cos 2> (3.18a)

G,._(r,0)=G_,(r,0)

m

zmeikp Sin%F<1 +imR, | —imR; l;c()sz.g>

(3.18b)

We have written the Green function in terms of its components
6-(% )
G_, G__

Because of the rotational symmetry of the sphere, the one-body
density is a constant and the two-body densities for two points depend only
on their angular distance o. Therefore, without any loss of generality, the
one-body density can be retrieved by using (3.18a) in (2.5). The behavior
(3.17) near s=1 allows us to build an expansion in inverse powers of R

and to retrieve (3.9). One obtains the truncated two-body densities by
using (2.8) and (3.18) in (2.6).

General Case. The rotational invariance of the two-body trun-
cated densities implies that the Green function for two points has a
modulus which depends only on the angular distance a« between these
points. However, in general there is also a phase factor, depending on
the coordinates of both points, and this phase is needed to compute the
higher-order densities using (2.7). Thus, we have to look for the Green
function in the general case of two arbitrary points.

To find G(r,r’) in general, following the method of ref. 11, we shall
rotate the sphere around a horizontal diameter in such a way that v’ comes
to the south pole. This rotation transforms the complex coordinate z into

z—z2

This formula can be obtained, for instance, by noting that Z has to be a
metromorphic function of z, since the transformation is a conformal one,
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and by considering first the special case when z and z’ are real. If we make
this change of variables in the Dirac operator of (3.11), we obtain, after a
short calculation,

0 ,
) (o—+ —(%-Hr_ E) e“?+m

‘ 0 ]
— —302/2 £2/2 S’l
S[e 2<a+ —aZ-HL —HZ>6 +m]
where e” =[1+ (|Z|%4R*)]17 ! is the conformal weight at point Z, and S

is a 2 x 2 matrix
e 0
S:( 0 eim) (3.20)

¢ L= (ZZ/AR) L+ (2/4R?)
‘- { — (Zz'/4R?) 1+ (22'/4R?) (3.21)

where

Multiplying both sides of (3.11) on the left by S™' and noting that
STIS(M, M)=[S(Z=0)]""6(M, M')=56(M, M"), we find

0 0
{e"39/22 (o‘+ s7to- 5—2:> e +mJ STIG(r,v')=8(M, M’)
Therefore S™!G(r,r’) is the Green function of the operator which is
obtained from the one in (3.11) by replacing z by Z but keeping the same
Pauli matrices. The source point M" is located at Z = 0. Consequently,

G(r,r')=S8G(Z,0)

where G(Z,0) is given by (3.18) with p=arg Z=arg{(z—z')/[1+(zZ'/4R*)]}.
Performing the multiplication by S gives the Green function, now in the
general case:

G, (r,x')=e""? cos % A(x) (3.22a)
G, (1)=G_ . (Lr)=e “sin ; B() (3.22b)
where
m>R o
Ay =——"——=F(1+i 1 —imR; 2; cos* =
(o) Asmh nmRF( + imR, imR; 2; cos 2)
m &
Bla)=—— _F(1+4i —imR- 1: cos2 %
(o) 3 sinh omR <+sz,1 imR; 1; cos 2)

The phase { is given by (3.21) and £/2 = arg(z — z').

822/69/1-2-13
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Using (3.1) and (3.2), we obtain alternative expressions for the phases:

=arg SinQsiﬂ—,-i-cosQCOS__,e‘-i((pw(p')
2 2 2 )

P2 Ol

0 r 0 o
— — Qi — e —qin — — pl¥
arg |:COS 3 s 5 e sin 2 COs 2 (4 :I

and a more compact expression for (3.22):

G(r,r')=e“"? {[1 +(6—.2)1£:2”—”] A(a) +E'(;_1;[2 B(oc)} e”?

where 6= (0,, 7,).
It may be remarked that the form (3.20) of S is not unexpected. The
conformal transformation (3.19) rotates a line element by an angle

ar a—Z—ar 1+ (|z'|?/4R?) ¢
8o T R U+ R

Therefore, the local frame of reference at Z is obtained from the one at z by

a rotation of angle —{ around the vertical axis. It is well known that under

such a rotation the Pauli matrices are transformed by (3.20).
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